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A Novel Prescriptive Model to Improve Supply Chain Networks by Monitoring 

the Relationship Between Influential Variables Across the Network 

Abstract 

The goal of Supply Chain Monitoring is to provide an efficient tracking system for ensuring a secure 

flow of goods and services throughout the supply chain. Supply chain monitoring helps identify and 

address unexpected events early. There are five main components in supply chain networks including 

Manufacturing, Warehousing, Procurement, Logistic/transportation and Demand. Numerous factors 

in each of the five components of the supply chain have an impact on sales and production. This paper 

presents a comprehensive method to monitor and analyze these factors' impact on both sales and 

production, ultimately aiming to identify areas for cost reduction and improvement. To achieve this 

goal, the sales and production are modeled and evaluated. Then, products with out-of-control behavior 

are simultaneously identified. Finally, to optimize out-of-control products, we considered the most 

influential factors affecting sales and production. The optimal values for out-of-control products were 

selected to minimize operating costs while simultaneously maximizing operating profits within the 

supply chain. A case study in the Personal Care industry shows that the method increases the operation 

profit rate for out-of-control products.  

Keywords: Supply Chin Monitoring, Generalized Estimating Equation (GEE), Hotelling T2 Control 

Chart, Joint Optimization Plot 
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1 Introduction  

A supply chain network consists of five main sections: Procurement and suppliers, manufacturing 

units, warehouses, logistic/transportation such as distribution centers and retailers, and 

demand/customers. These units are responsible for acquiring raw materials, producing goods, and 

delivering them to end-users. Extensive research on supply chain networks highlights the pivotal role 

of a streamlined network in determining a business’s overall economic success (Wang et al., 2020). 

Accordingly, supply chain operations come across various types of risks, such as delays, poor quality 

from suppliers, procurement failures, imprecise forecasts, uncertain consumer demands, and potential 

supply chain disruption like natural disasters (Akkermans and Wassenhove, 2018). Clearly, in the 

absence of a well-organized supply chain strategy, these risks and vulnerabilities might result in 

financial losses or even a complete collapse of the supply chain network (Wang et al., 2020). 

Therefore, creating a measurement system that facilitates a coordination approach for joint decision-

making in all components of supply chain is so crucial (Kim & Oh, 2005). 

Due to the complex nature of processes and activities in supply chain, managing risks is so essential 

to avoid disruption (Ethirajan et al., 2021). A supply chain must overcome a disruption before it can 

leverage events as an opportunity for growth (Nikookar et al., 2024). Accordingly, supply chain 

operations come across various types of risks, such as delays, poor quality from suppliers, procurement 

failures, imprecise forecasts, uncertain consumer demands, and potential supply chain disruption like 

natural disasters (Chopra & Sodhi, 2006, Tang, 2006). Clearly, in the absence of a well-organized 

supply chain strategy, these risks and vulnerabilities might result in financial losses or even a complete 

collapse of the supply chain network (Wang et al., 2020). Moreover, supply chain disruptions have 

become more frequent and severe (Manhart et al., 2020) which requires a rethinking of supply chain 

management (SCM) for practice to cope with extreme situations, present and in the future, whether 

due to pandemics, war, climate change, or biodiversity collapse (Sodhi & Tang, 2021). Therefore, 
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creating a measurement system that facilitates a coordination approach for joint decision-making in 

all components of supply chain is so crucial (Kim & Oh, 2005). 

The operational complexity is increased as we extend to downstream supply chain sections connecting 

producers to consumers (Gómez & Lee, 2023). This system should be aligned with the goals of the 

supply chain network’s independent elements, coordinate their efforts, and ultimately enhance the 

overall performance of the entire chain (Wang, 2010). Therefore, monitoring supply chain operations 

by timely detecting abnormal operations is crucial for the effective functioning and economic viability 

of a supply chain system.  

Thus, supply chain monitoring (SCMo) is defined to promptly detect the network and provide early 

warnings of abnormal operations for effective supply chain management (SCM). SCMo has become 

an integral component of Supply Chain management. The primary objective of SCMo is to improve 

decision-making by characterizing the normal operating conditions of a supply chain, revealing 

discrepancies between planning and execution, warnings for abnormal situations, identifying possible 

root causes, and providing recommendations for mitigation (Wang et al., 2023).   

During the last decades, the mainstream focus of supply chain management was on cost efficiencies 

by using just-in-time methods and avoiding holding excess inventory (Kovács and Falagara Sigala, 

2021). Most studies in literature often analyze only one out of the five components in supply chain, 

e.g., solely focused on optimizing manufacturing or distribution. Consequently, they use methods that 

might be sufficient for limited number of variables such as statistical methods based on cross-sectional 

data, which can only provide one measurement for each response at a specific time point. The primary 

contribution of this paper is to address these shortcomings through the follows unique features: 

1- Our proposed analysis focuses on all five components of supply chain functions over time to 

reduce operating costs and increase supply chain efficiency. 
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2- Our method is comprehensive and novel that combines established techniques and can create 

an efficient approach for handling numerous variables and correlated characteristics in the data 

when monitoring the supply chain network across its five functions over time. This method is 

rooted in a robust foundation grounded in principles of multivariate analysis, focusing on 

longitudinal analysis and optimization techniques, aiming to optimize supply chain networks.   

3- Our proposed method can be applied and extended to larger and more complex supply chain 

networks, where multiple elements exist within each of the five sections of the supply chain 

network.  

4- Finally, a novel case study on the supply chain of a personal care company in the Middle East 

is presented, and the application and performance of the proposed method is assessed over this 

real-world case study.  

2 Literature Review and Background 

Supply chain management now relies more than ever on data to capture cost and performance trends, 

monitor inventory, support process control and improvement, as well as optimize production. To gain 

insights and make informed decisions about all sections of supply chain management, it is important 

to understand the value of data analytics and its effective use in supply chain management (Sukha & 

Prabhu, 2022). This application of advanced data analytics techniques to supply chain management is 

called Supply Chain Analytics (SCA) (Gilvan, 2014). The SCA techniques have a significant role in 

SCMo and can be classified into three main types:  

1) Descriptive analytics extracts valuable insights from the network data to describe “what is 

happening”. For instance, real-time information about the location and quantities of goods in the 

supply chain network equips managers with the necessary tools to make adjustments regarding 

delivery schedules, replenishment orders, emergency orders, and transportation modes, etc. 
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 2) Predictive analytics derives demand forecasts from historical data and predicts "what will be 

happening" in the future.  

3) Prescriptive analytics generates decision recommendations by combining descriptive and predictive 

analytics models with mathematical optimization techniques. It addresses the question of "what should 

be happening" and guides decision-makers towards optimized strategies and solutions (Gilvan, 2014). 

Notably, prescriptive analytics receives significant attention in academic research, software 

development, and practical application within the domain of SCA.  

------------------------------------------Insert FIGURE 1 Approximately Here------------------------------------------ 

Nguyen et al, (2017) proposed a visual framework FIGURE 1, which helps the understanding of the 

relationships between different supply chain layers/components and the role of data analytics studies 

in assessing their performance. The first layer represents the five main key functions of Supply Chain 

Management, while supply chain data analytics is associated with the second and third layers in this 

taxonomy, referring to the aforementioned types of SCA studies.  

To explore the diverse usage of data analytics approaches in SCM, the following recent studies can be 

discussed as examples: 

As for procurement, Jain et al. (2014) conducted a study employing a data mining approach to uncover 

the hidden relationships between data used for suppliers' selection and their overall rating based on 

prior performance. This approach significantly aids in optimizing the supplier selection process. 

Similarly, Choi et al., (2016) introduced a novel data analytics approach using Fuzzy Cognitive Maps 

to enhance decision-making in IT service procurement for the public sector. This unique method 

combines data analytics with intuitive qualitative techniques to create decision models, and its efficacy 

was validated through a case study, demonstrating its value in facilitating robust public decision-

making. Mori et al., (2012) utilized Support Vector Machine and Logistic Regression to build a 
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prediction model for customer-supplier relationships, which can help to identify potential business 

partners.  

As for the manufacturing, Zhang et al., (2017) proposed an overall architecture called data-based 

analytics for product lifecycle. This architecture leverages data analytics and service-driven patterns 

and through a practical application scenario, it demonstrates impactful benefits for customers, 

manufacturers, the environment, and all stages of product lifecycle management.  

In studies on inventory and warehousing, Chiang et al., (2011) introduced an association index and 

proposed a data mining-based storage assignment approach that enhances the efficiency of order 

picking. Khurana & Kumar, (2017) conducted a practical usage of data analytics in inventory 

management and implemented linear discriminant analysis on a large data set to find the dependencies. 

Chen, (2021) addressed an inventory control problem with active exploration in the inventory through 

lost sales in a shifting demand environment through historical data analysis. Suwignjo et al., (2023) 

applied gradient boosting model for solving the inventory status (overstock, understock) by 

considering demand forecast in an FMCG company.  

In terms of logistics/transportation, Zhao et al., (2016) used the upper and lower limits of uncertain 

parameters from historical data to redesign a green supply chain network. Li et al., (2015) employed 

Lasso Granger causality models to select the most relevant data to build a traffic prediction model. 

Subhakanta & Mohanty (2018) proposed a deterministic linear programming model to address a 

transportation problem where the unit cost of supplies, transportation and demands are uncertain. They 

minimized the expected value of an uncertain objective function with respect to some constraints under 

certain confidence level. Amellal et al., (2023) addressed the lack of accurate lead time for meeting 

customer demand by developing a hybrid model combining Long Short-Term Memory (LSTM) and 

Convolutional Neural Network (CNN) architectures.  



8 

 

As for demand management, Salehan and Kim, (2015) used a sentiment mining approach to study 

predictors of online consumer review performance. Chong et al., (2016) employed a neural network 

to examine the impact of different variables such as online reviews, promotion strategies, and 

sentiments on product sales. Additionally, Mohan et al., (2021) proposed a demand forecasting and 

route optimization approach for delivering products on time and meeting customer’s growing 

expectations. Nguyen, T, (2023) reviewed the artificial intelligence models such as recurrent neural 

networks for demand forecasting in supply chain over various industries.  

Wang et al., (2020) and Kapil et al., (2021) described that the data-driven optimization techniques are 

playing a significant role in enhancing SCM in uncertain environments. By integrating machine 

learning, data analytics, and robust optimization, the planning of supply chain network can be more 

efficient and accurate. These data-driven techniques display their potential in improving SCM under 

uncertainty. Nahum, Méndez-Sánchez (2023) utilized machine learning method in the context of 

supply chain management for predicting the electricity consumption in Turkey to achieve smart and 

sustainable processes in making decisions. Finally, Nitin et al.., (2023) employed bibliometric 

statistical analysis on supply chain analytics to provide a systematic analysis of this area for identifying 

key research themes and sub-themes for enhancing performance of supply chain management and 

business value. TABLE 1 summarized the details of aforementioned studies on SCM using data-driven 

techniques:  

------------------------------------------Insert Table 1 Approximately Here------------------------------------------ 

A major gap in literature is that most of the current studies have focused solely on one specific function 

out of the five in the supply chain network i.e., Manufacturing, procurement, demand, warehousing, 

transportation. To the best of our knowledge, there are no comprehensive studies integrating the 

analysis of all five main functions of supply chain network through data analytics approaches. 

Accordingly, a comprehensive analysis through a data-driven statistical model across all five supply 
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chain functions for reducing operating costs will be a compelling research opportunity in this field. 

Moreover, to monitor the supply chain network across its five functions over time, a statistical method 

is required to be used due to numerous variables to be considered and the correlated characteristics in 

the data. Longitudinal data is particularly suitable for handling such data, unlike cross-sectional data, 

which can only provide one measurement for each response at a specific time point. One of the main 

advantages of longitudinal data is that the correlation among observations within an experimental unit 

leads to more specific power level in longitudinal data compared to cross-sectional data. Consequently, 

a smaller number of experimental units is needed in the sample to achieve a specific power level. 

Achieving a specific power level can guarantee a high likelihood of detecting meaningful effects or 

relationships between characteristics (Diggle et al., 2002). In this regard, a Generalized Estimating 

Equation model is employed to create a control chart for detecting inefficient items in the problem and 

then the paper proposes a joint optimization approach to enhance these items and boost supply chain 

efficiency.  

2.1 Background 

The key terms and concepts that will be used in our method are reviewed in this section to aid in the 

understanding of the proposed solutions and their effectiveness in addressing the challenges presented 

in the case study. 

2.1.1 Longitudinal Data 

The primary goal of a longitudinal study is to characterize changes in responses over time and 

determine the factors that influence these changes. Thus, the main characteristic of longitudinal data 

is the repeated measurement of subjects over time. One important feature of longitudinal clustered 

data is that each cluster consists of observations from a single experimental unit at different time 

points. (Diggle et al., 2002 and Fitzmaurice et al., 2012). Finding a useful set requires understanding 
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the sources of random changes in longitudinal data. These sources can be classified into the following 

three general categories (Fitzmaurice et al., 2012): 

• Random effects: In a situation where a population is randomly sampled, various aspects of the 

sample members' behavior represent random variations between experimental units. Random 

effects are the variables that differ among subjects. 

• Sequential correlation: At least a portion of each measured unit exhibits a time-dependent 

response within that unit. These random changes are caused by the correlation between the 

measured pairs within the same unit, and this correlation depends on the time difference 

between the measured pairs. Usually, the correlation decreases with increasing time interval. 

• Measurement error: The measurement process within the experimental unit may lead to 

changes in the data.  

In longitudinal data, 𝑦𝑖𝑗 represents the response variable of the 𝑖-th subject in the 𝑗-th measurement, 

and 𝑥𝑖𝑗 is a 𝑝-dimensional vector of explanatory variables at time 𝑡𝑖𝑗, where 𝑗 = 1, 2, . . . , 𝑛 and 𝑖 =

1, 2, . . . , 𝑚, where 𝑛 is the number of subjects and 𝑚 is the number of measurements. Most longitudinal 

analyses are based on a regression model, such as the following linear model: 

(1) 𝑦𝑖𝑗 = 𝛽1𝑥𝑖𝑗1 + 𝛽2𝑥𝑖𝑗2 + ⋯ + 𝛽𝑝𝑥𝑖𝑗𝑝 + 𝜖𝑖𝑗 

 

This model can be expressed in matrix form as follows: 

(2) 𝑦 = 𝑋𝑖𝛽 + 𝜖𝑖 

 

where 𝑋𝑖 is an 𝑛𝑖 × 𝑝 matrix of explanatory variables, 𝛽 is the vector of unknown regression 

coefficients of dimension p, 𝜖𝑖 = (𝜖𝑖1, … , 𝜖𝑖𝑛𝑖
) is the random vector of errors, and 𝑦𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑛𝑖

) 

represents the repeated responses for the 𝑖-th subject (Diggle et al., 2002 and Fitzmaurice et al., 2012). 
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2.1.2 Marginal Models 

Marginal models are one of the common methods for longitudinal data modeling that will be used in 

this study. In marginal models, the response variable is modeled on covariate variables apart from the 

within-subject correlation structure (Fitzmaurice et al, 2012). In this model, the marginal expectation 

of the response variable is expressed as a function of the explanatory variables. The term "marginal 

expectation" refers to the average response in a subpopulation with common values of 𝑋. A marginal 

model is characterized by the following three key features. 

The marginal expectation of the response, 𝜇𝑖𝑗 = 𝐸(𝑦𝑖𝑗|𝑋𝑖𝑗), depends on the covariates with a certain 

link function Eq. (3): 

(3) 𝑔(𝜇𝑖𝑗) = 𝜂 = 𝑋𝑖𝑗
′ 𝛽 

 

The marginal variance of the responses is related to the marginal mean as Eq. (4): 

(4) 𝑉𝑎𝑟(𝑦𝑖𝑗) = 𝜙. 𝜐(𝜇𝑖𝑗) 

 

where,  𝜐(𝜇𝑖𝑗) is a specified variance function; and, 𝜙 is a scale parameter that may need to be 

estimated. The correlation between within-subject observations is a function of the marginal mean and 

additional parameters 𝛼. 

within-subject communication of the repeated responses vector is modeled as (5) by considering the 

correlation pattern of the first-order autoregressive model, where 0 ≤ 𝛼 ≤ 1 (Diggle et al, 2002): 

𝐶𝑜𝑟𝑟(𝑦𝑖𝑗, 𝑦𝑖𝑘|𝑋𝑖𝑗, 𝑋𝑖𝑘) = 𝛼|𝑘−𝑗| (5) 

 

Therefore, in the marginal models, the correlation in the longitudinal data is considered through the 

variance-covariance matrix. In a marginal model, the identical relationship between the response 
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variable and the matrix of covariate variables is assumed to apply to all subjects in the sample. The 

key feature of marginal models is that they model the mean response and within-subject relationships 

separately. Consequently, the regression coefficients in this model are interpreted as population 

averages, meaning that changes in the mean response relative to the predictor variables are examined 

in the sub-population defined by these predictors (Carrière et al., 2002 and Fitzmaurice et al., 2012). 

As a result, when studying time-independent predictor variables, i.e., variables that do not change for 

each individual during the follow-up period, population-average interpretations are typically preferred 

(Wu et al., 2012). 

In these models, the method of Generalized Estimating Equations (GEE) is employed to estimate the 

parameters (Fitzmaurice et al, 2012). GEE allows for the estimation of parameters while considering 

the correlation structure between the response variables, without requiring knowledge of their specific 

distribution. The correlation matrix derived from this structure is assumed to be identical for all 

subjects in the sample. The data consists of repeated measures of the response variable and covariate 

variables within a group of subjects. With this method, a suitable model is constructed for the mean 

of the response variable, incorporating separate observations and correlated variables (Fitzmaurice et 

al, 2012). In most cases, according to the type of response variable and specific design conditions, a 

generalized linear model such as (6) can be used to model grouped structures. In (6), 𝑦𝑖 represents the 

value of the response variable for subject 𝑖, 𝑋𝑖  is the correlated variable or covariate, and 𝛽 is a vector 

of model parameters or independent coefficients of 𝑋𝑖. 𝜀𝑖  represents the random terms, and 𝑔 is the 

link function, which maps the set of possible values of the response variable to a linear function of the 

𝑋 variable. 

𝑦𝑖 = 𝜇𝑖 + 𝜀𝑖     , 𝑔(𝜇𝑖) = 𝑓(𝑥) = 𝑋𝑖𝛽 (6) 

To estimate the parameters of the "generalized linear model" and perform inference, it is typically 

assumed that the error terms (𝜀) have the same distributions and are independent. However, this 
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assumption often does not hold in practice. As an alternative, Generalized Estimating Equations (GEE) 

offer a non-parametric approach that does not rely on the normal distribution assumption for the error 

term. 

2.1.3 Generalized Estimating Equations (GEE) 

In GEE, instead of assuming a specific distribution for the data, the best estimate for 𝛽 is generated 

using iterative calculation techniques and trial and error. This approach aims to be the most descriptive 

for capturing the relationship between the response and dependent variables (Ziegler et al., 1998). 

The GEE estimator for 𝛽 in the marginal model is obtained by minimizing the objective function (7): 

∑{𝑦𝑖 − 𝜇𝑖(𝛽)}´𝑉𝑖
−1{𝑦𝑖 − 𝜇𝑖(𝛽)}

𝑁

𝑖=1

 (7) 

 

where 𝑉 is not dependent on 𝛽 and 𝜇𝑖, and 𝜇𝑖 is a vector of the average response with the following 

components: 

(8) 𝜇𝑖𝑗 = 𝜇𝑖𝑗(𝛽) = 𝑔−1(𝑋𝑖𝑗
´ 𝛽) 

 

Using differential and integral calculus, we can demonstrate that the existence of the minimum 

function in Eq. (7) requires the solution of the following generalized estimating equations: 

∑ 𝐷𝑖
´

𝑁

𝑖=1

𝑉𝑖
−1(𝑦𝑖 − 𝜇𝑖) = 0 (9) 

 

in which 𝑉𝑖  is called "working" covariance matrix and 𝐷𝑖 = ∂𝜇𝑖/𝜕𝛽 represents the gradient or 

derivative matrix. Since GEE relies on both β and α, the following iterative two-step estimation 

procedure is necessary: 
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1. According to the current estimates of α and 𝜙, 𝑉𝑖 is estimated and the updated estimate of 𝛽 is 

obtained as generalized estimating equations resulting from Eq. (9). 

2. According to the current estimate of 𝛽, the updated estimates of 𝛼 and 𝜙 are obtained based 

on the standardized residuals Eq. (10): 

 

𝑒𝑖𝑗 =
𝑦𝑖𝑗 − 𝜇𝑖�̂�

√𝜐(�̂�𝑖𝑗)

 
(10) 

 

Finally, in this two-step estimation method, the process is typically iterated between steps 1 and 2 to 

ensure convergence (Fitzmaurice et al., 2012). 

2.1.4 Hotelling Multivariate Control Chart (𝑻𝟐 Control Chart) 

In many instances, monitoring multiple related quality characteristics simultaneously is crucial. It 

helps control these traits effectively and evaluate their potentially deceptive nature. To tackle such 

scenarios, specialized tools must be employed to detect, identify, and analyze the significant sources 

of variability in a given process. Among the various techniques, Multivariate Control Charts stand 

out since they can simultaneously monitor and control multiple characteristics that define the quality 

of a single production process. The Hotelling 𝑇2 control chart holds significant recognition in the 

literature and comes highly recommended for processes involving multiple qualitative characteristics. 

Since these features are interconnected, monitoring them collectively is crucial. The 𝑇2 test statistic is 

derived from the Eq. (11) (Montgomery, 2019). 

𝑇2 = 𝑛(�̅� − �̿�)´ + 𝑆−1(�̅� − �̿�) (11) 

 

In (11),  �̅� is the mean vector, and 𝑆 represents the covariance matrix of the process. The application 

of multivariate control Hotelling 𝑇2 chart is performed in two phases: 
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• Phase I: the chart's upper control bound is calculated using Eq. (12) 

𝑈𝐶𝐿 =
𝑝(𝑚 − 1)(𝑛 − 1)

𝑚𝑛 − 𝑚 − 𝑝 + 1
 𝐹𝛼,𝑃,𝑚𝑛−𝑚−𝑝+1 (12) 

 

In (12),  𝑝 is the number of variables, 𝑚 is the number of samples, 𝑛 is the sample size, and 𝛼 is the 

parameter of the 𝐹 distribution degree (Bersimis et al., 2007 and Tracy et al., 1992).  

• Phase II: the chart's upper control bound is expressed by Eq. (13) 

𝑈𝐶𝐿 =
𝑝(𝑚 + 1)(𝑛 − 1)

𝑚𝑛 − 𝑚 − 𝑝 + 1
 𝐹𝛼,𝑃,𝑚𝑛−𝑚−𝑝+1 (13) 

 

The lower control limit for both phases is equal to zero in the control chart (Bersimis et al., 2007 and 

Tracy et al., 1992). 

2.1.5 Joint Optimization Plot 

In an industrial experiment or decision-making system, there are several control factors (independent 

variables) denoted as 𝑥1, … , 𝑥𝑘, multiple control responses (dependent variables) represented by 

𝑦1, … , 𝑦𝑁 , and various target values 𝜏1, … , 𝜏𝑁. When aiming to optimize such a system, conflicts may 

arise in the results while attempting to optimize the control factors individually. Consequently, a 

relative combination of the factors is necessary to bring the multiple responses as close as possible to 

the specified target values. The application of the Joint Optimization method enables us to achieve 

this objective. Joint optimization refers to the process of finding the optimal values for multiple 

variables or parameters simultaneously. It involves considering the trade-offs and compromises 

between different objectives or constraints. The strategy for simultaneously optimizing multiple 

responses is presented as follows (Kuhnt & Rudak, 2013 and Pignatiello & Joseph, 1993): 
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Consider an experiment with control factors 𝑥1, … , 𝑥𝑘 and 𝑁 responses 𝑦1, … , 𝑦𝑁 with target values 

𝜏1, … , 𝜏𝑁. The optimal settings for the control factors should be determined to ensure that the means 

of the responses are on target with minimal variances. This can be achieved by minimizing the 

expected loss of 𝑦 with respect to 𝑥, which is referred to as the risk function and is defined as follows: 

𝑅(𝑥) = 𝐸(𝑙𝑜𝑠𝑠(𝑦|𝑥)) = 𝐸((𝑦 − 𝜏)𝑇𝐶(𝑦 −  𝜏)|𝑥)

= 𝑡𝑟𝑎𝑐𝑒 (𝐶𝛴(𝑥)) + (𝜇(𝑥) − 𝜏)𝑇𝐶(𝜇(𝑥) − 𝜏) 

(14) 

 

where (𝑦 − 𝜏)𝑇𝐶(𝑦 − 𝜏) represents the loss function, and 𝐶 is the cost matrix, 𝜇(𝑥) = 𝐸(𝑦|𝑥) 

denoting the expected value of 𝑦 given 𝑥, and Σ(x) represents the covariance matrix of 𝑦 given 𝑥. In 

the case of independent responses 𝑦1, … , 𝑦𝑁 , both the covariance matrix Σ(𝑥) and 𝐶 become diagonal 

matrices, so Eq (14) turns to Eq (15) where ci represents the 𝑖 th element of cost matrix. 

𝑅(𝑥) = ∑ 𝑐𝑖. (𝜎𝑖
2(𝑥) + (𝜇𝑖(𝑥) − 𝜏𝑖)2)

𝑁

𝑖=1

 (15) 

 

Minimizing the risk function, as described in Eq. (16), means adjusting the average value (mean) 

towards the desired goal while keeping the variability (variance) as low as possible (Pignatiello, 1993). 

In situations involving an unknown matrix C, this cost matrix is decomposed to Eq. (16) in which A is 

diagonal standardization matrix and W is diagonal weight matrix. 

𝐶 = 𝐴𝑇𝑊𝐴 (16) 

 

Diagonal elements of weight matrix W are specified through a slop vector dϵRN for N responses and 

a stretch value log(a) in the following form 

𝑙𝑜𝑔 𝜔 = 𝑑. 𝑙𝑜𝑔 𝑎 (17) 
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where ω is diagonal of weight matrix W and {at}t=1
N  is an increasing equidistance vector within the 

interval [logalow, logahigh]. Standardization matrix A for k control factors is defined as 

𝐴𝑦 = 𝑑𝑖𝑎𝑔([
1

𝑘
∑ 𝑣𝑎�̂�(𝑦𝑖|𝑥𝑘

𝐾

𝑘=1

)]𝑖=1,…,𝑁
−1/2

) (18) 

Therefore, the estimated risk function in Eq. (14) is given by (19) where bi denotes the inverse of i th 

element of standardization matrix A. 

�̂�(𝑥) = ∑ 𝜔𝑖.
(𝑣𝑎�̂�(𝑦𝑖|𝑥) + (�̂�(𝑦𝑖|𝑥) − 𝜏𝑖)

2)

𝑏𝑖
2

𝑁

𝑖=1

 (19) 

 

The sequence of weight matrices ensures an optimal solution, and a joint optimization plot displays 

the optimal parameter setting for every cost matrix Ct = ATWtA  in one plot and its corresponding 

predicted response in other plot (Pignatiello, 1993).   

3 Proposed Method 

We propose a comprehensive method to monitor and optimize variables across all five main sections 

of a supply chain network. The goal is to enhance the overall performance of any general supply chain 

network. The method requires data from the five main sections of the supply chain over a twelve-

month interval and organizing it as a matrix. Due to the high correlation and longitudinal structure of 

the data, it is necessary to employ a method that does not require assuming normality for the error 

distribution in the regression model. This leads to the application of the GEE method for modeling the 

problem. Notably, such a comprehensive statistical method has not been employed in previous studies 

analyzing supply chain networks. This study explored changes in production & sales over time (using 

GEE analysis) and subsequently used a Hotelling 𝑇2 multivariate control chart to monitor product 

performance and identify any supply chain issues. Recognizing the need for optimization, a joint 

optimization method considering interconnected variables was employed to simultaneously optimize 
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costs and profits. This approach, rarely used in supply chain monitoring, offers a unique and effective 

solution for improving overall performance. These steps were outlined as follows and shown  

FIGURE 2:  

Step 1: The variables resulting from the problem were reshaped into a longitudinal form to make a set 

of explanatory and response variables for sales and production. The supply chain has essentially been 

decomposed for further analysis. 

Step 2: In this longitudinal supply chain study, the time variable is introduced as a fixed effect. 

Additionally, variables associated with all five functions of the supply chain are considered as 

covariates to assess their influence on the response variables. The (GEE) method was utilized to 

analyze the data, considering the within-Stock Keeping Unit (SKU) effect as a latent variable. The 

modeling process involved utilizing the "xtgee command" in Stata software. Two separate analyses 

were carried out: one for sales and another for production. 

Step 3: Using the Hotelling 𝑇2 control chart, we use this control chart to monitor two variables derived 

from the fitted values in Step 2 of the Phase I control chart. In this step (3), we detect and optimize 

out-of-control products using the Joint Optimization (JOP) method. We performed this crucial step 

with the MSQC package in R-4.3.2 software. 

Step 4: The variables related to products beyond the control chart should be optimized. We utilized 

the JOP model, considering the cost of goods sold and finance costs of the products as the response 

variables. The decision variables for the modeling process were internal factors within the business. 

This phase was executed using the JOP package in R-4.3.2 software.  

------------------------------------------Insert FIGURE 2 Approximately Here------------------------------------------ 
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In the following, the efficiency of the proposed method is demonstrated on a real case study in the 

supply chain of a personal care company. 

4 A Real-World Case Study  

In this paper, a real-world case study was presented, conducted on the supply chain network of a 

company in the personal care industry operating in the Middle East. Due to confidentiality agreement, 

the company’s name and specific products cannot be disclosed.  

The study focused on analyzing a Multi-Echelon Supply Chain network that involved 51 Stock 

Keeping Unit (SKU) products. Data were comprehensively collected across all five main sections of 

the supply chain: procurement, manufacturing, warehousing, logistics/transportation, and demand 

management.  

The examination covered the entire supply chain network, starting from the plant to the distribution 

centers (depots), and finally, the presence of products on store shelves. Due to the company’s reliance 

on imported raw materials from foreign countries, most of the independent variables are from the 

procurement section. Notably, three main raw materials are identified as the major portion of the total 

purchasing from suppliers. These materials are represented as the I, II, and III raw materials in the 

study. Three economic factors: the consumer price index, currency rate, and point-to-point inflation 

rates have direct impacts on consumer purchasing behavior (Khajehzadeh et al, 2022). Therefore, 

during the study, these significant factors were also collected and analyzed within the demand section. 

These factors were collected as part of the demand management section to understand their influence 

on the overall demand for products. Given that there are 51 SKUs and 21 variables derived from all 

five sections of the supply chain network, data collection extended over twelve months for all products. 

This resulted in a database represented as a matrix with 612 =  51˟12 rows, and 21 columns. The 
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response variables and independent variables corresponding to each supply chain section were 

integrated into the dataset for analysis.  

This case study provides valuable insights into the complexities of the supply chain network of our 

targeted personal care company. Error! Reference source not found. shows the variables of supply 

chain: 

------------------------------------------Insert Table 2 Approximately Here------------------------------------------ 

4.1 Results  

A random effects model with the identity link function was fitted to the data for each of the two 

variables of sales and production. The mixed-effects model for each response is as Eq.20 where 𝛽0 is 

the intercept, 𝑢𝑖  is the random effect of the 𝑖-th, 𝛽𝑖𝑗  is the effect of variable 𝑥𝑖𝑗, and 𝜀𝑖𝑗  is the random 

error. 

𝑦𝑖𝑗 = 𝛽0 + 𝑢𝑖 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑗 + 𝜀𝑖𝑗

12

𝑗=1

52

𝑖=1

 (20) 

The results of fitting the GEE model on production and sales are shown in TABLE 3  

RESULTS FOR PRODUCTIONand Error! Reference source not found.,  respectively.  

------------------------------------------Insert Table 3 Approximately Here------------------------------------------ 

Based on the results of TABLE 3  

RESULTS FOR PRODUCTION, variables 𝑥4 , 𝑥5 , 𝑥6, and 𝑥19 are statistically significant as their p-

values are less than 0.05. This means they have a significant impact on production. With each unit 

increase in 𝑥4, production increases by 0.22 units, and with each unit increase in “storage of raw 

material (II)” (𝑥5), production increases by 0.14 units. Furthermore, according to the results, each unit 

increase in “storage of raw material (III)” (𝑥6) leads to a significant increase in production by 1.89 
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units. However, variables “third raw material purchasing quantity” (𝑥15) has a negative coefficient and 

is statistically significant, suggesting that an increase in x6 leads to a decrease in production, each unit 

increase will result in a decrease in production by 0.012 and 0.002 units. 

------------------------------------------Insert Table 4 Approximately Here------------------------------------------ 

Based on the results of TABLE 4  

RESULTS FOR SALE, variables 𝑥4, 𝑥5 , 𝑥6 , 𝑥18 , 𝑥19 and 𝑥21 are statistically significant as their p-values 

are less than 0.05. This means they have a significant impact on sales; accordingly, with each unit 

increase in “storage of raw material (I)” (𝑥4), sales increase by 0.19 units, and with each unit increase 

in “storage of raw material (II)” (𝑥5), sales decrease by 0.098 units. Additionally, with each unit 

increase in “shelf Price” 𝑥19 and “consumer price index” 𝑥21 , sales decrease by 0.001 and 0.02 units, 

respectively. On the other hand, each unit increase in 𝑥18 leads to a sales increase of 0.023 units. (p-

value < 0.05). The result of monitoring the fitted values obtained by the Hotelling T2 control chart is 

shown in FIGURE . 

------------------------------------------Insert FIGURE 3 Approximately Here------------------------------------------ 

As shown in the chart, there are 14 samples in the company's supply chain network that are out of 

control (Sample 260, 285, 292, 316, 365, 426, 427, 460, 461, 464, 467, 468, 537, 538). By analyzing 

the data, we observed that three products were repeatedly identified as inefficient in the outputs. 

Therefore, these items were eliminated for further examination. The performance of the remaining 

eleven sample products should be improved. 

The correlation chart of each of the two response variables versus the significant variables is shown 

in FIGURE . In this figure, there is a correlation between the explanatory variables and sale and 

production. Therefore, the existence of a relationship between the explanatory variables and 𝑌1 and 𝑌2 
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is intuitively confirmed. In the next step, we used this interpretation for applying Joint Optimization 

plot in rendering optimal values.   

------------------------------------------Insert FIGURE 4 Approximately Here------------------------------------------ 
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4.2 Applying Joint Optimization to Render Optimal Values 

The analysis of the "Hotelling 𝑇2 Control Chart" revealed that 11 products within the supply chain 

network were experiencing inefficiencies and were out-of-control. To gain a deeper understanding of 

these problematic products, an investigation was conducted using the Profit and Loss (P&L) 

statements. The P&L statements indicated that each of the 11 out-of-control products incurred losses 

in at least one month during this 12-month interval. Consequently, transforming these losses into 

profitable outcomes is crucial for improving the overall performance of the supply chain network. 

Moreover, after a meticulous analysis of the data and the influence of variables on the supply chain 

during preceding stages, a clear revelation emerged: the storage of raw materials (I, II, and III) and the 

shelf price are identified as critical variables, bearing a substantial impact on the company's operations, 

performance, and overall success.  

Given that these factors can be controlled by the company, there is an opportunity for their 

enhancement. To do so, the Joint Optimization modeling was employed to derive new decision 

variables that boost the company's performance in generating profits. 

The simultaneous optimization plot illustrates the results of optimizing multiple responses graphically. 

In this plot, the optimization of control factors (variables) is shown in one graph, and the corresponding 

estimated responses aligned with the desired optimum are displayed in another graph (Kuhnt, 2004). 

As an example, consider the Product 1 (FIGURE ) which incurred losses in the fifth month of sales. 

By applying the Joint Optimization model, careful adjustments and fine-tuning were made to the 

values of critical variables throughout each twelve-month interval. These optimized decision variables 

were precisely customized to ensure profitability rather than loss.  
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As a result, effectively managing the storage of raw materials and setting appropriate shelf prices can 

lead to greater cost efficiency, improved revenue streams, and overall success in the competitive 

market landscape. FIGURE  shows results of the joint optimization plot:   

------------------------------------------Insert FIGURE 5 Approximately Here------------------------------------------ 

 

Optimal results for 𝑥4 , 𝑥5 , 𝑥6 , and 𝑥19 were obtained, and the operational profit was recalculated to 

assess improvements since the last performance evaluation of these 11 products in the supply chain 

network. The Error! Reference source not found. summarizes the performance of these products 

based on the new optimal values for the determined variables, comparing their previous operational 

profit to the optimized one: 

------------------------------------------Insert Table 5 Approximately Here------------------------------------------ 

 

Regarding the outputs, we can conclude that effectively managing the storage of raw materials and 

setting appropriate shelf prices can lead to cost efficiency, improved revenue streams, and overall 

success in the competitive market landscape. Emphasizing this approach as part of the company's 

supply chain strategy is crucial for sustainable growth and continued success.  

5 Conclusion  

The supply chain analytics can enhance supply visibility and improve forecasting, lead to lower 

inventory levels and cost savings, and increase overall efficiency. The primary contribution of this 

paper is to enhance multiple facets of the supply chain, encompassing storage levels and optimal shelf 

prices, to maximize profits. This is achieved through the utilization of statistical methodologies that 

have not been extensively applied before in the literature. Unlike previous studies focusing on 

variables from one or two sections of supply chain networks, this study implements a comprehensive 
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analysis across all five sections of the supply chain network. By examining variables across all 

sections, the study identifies the most significant ones to determine optimal values for these important 

variables, thereby enhancing the overall performance of the supply chain network. The method 

involves: 1) extracting data from the five main sections of the supply chain over a twelve-month 

interval, 2) utilizing the GEE method along with Hotelling T2 control chart to monitor product 

performance, 3) detecting any unusual or out-of-control behavior in the supply chain, 4) applying Joint 

Optimization modeling to the products that exhibited out-of-control behavior during the supply chain 

monitoring, 5) optimizing relevant variables derived from previous stages to find the optimal cost 

values, including the cost of goods and operational expenses.  

This study examined a real-world Multi-Echelon Supply Chain Network with 51 personal care 

products to provide prescriptive analytics for enhancing its performance. Data were collected across 

all five supply chain sections for a 12-month period based on 22 variables from the entire chain, from 

production to distribution centers and store shelves. 

As a result, the products exhibiting inefficiencies within the supply chain network undertake 

substantial improvement through the optimization of prices and the selection of optimal storage levels 

for raw materials during manufacturing which ensures profitability and enhances the company's supply 

chain performance. This strategic method led to a profit in their financial statement within a period 

that had previously incurred losses.  

For future studies, there is an opportunity to employ the Generalized Linear Model (GLM) in 

conjunction with a multivariate control chart capable of handling outliers and data with non-normal 

distributions, which are common characteristics in supply chain data. 
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Appendices (Tables and Figures): 

TABLE 1  

RELEVANT LITERATURE REVIEWS 

Reference Method Results  

Chiang et al., 2011 
Data mining-based storage assignment 

approach 

Enhancing the efficiency of order picking through an 

association index in warehousing. 

Mori et al., 2012 
Support vector machine and logistic 

regression 

Building a prediction model for customer-supplier 

relationships to identify potential business partners. 

Jain et al., 2014 Data mining approach 
Uncovering hidden relationships for suppliers' selection 

and optimizing the supplier selection process. 

Li et al., 2015 Lasso Granger causality models 
Building a traffic prediction model with a balance between 

complexity and performance. 

Choi et al., 2016 Fuzzy cognitive maps (FCM) 
Enhancing decision-making in IT service procurement for 

the public sector through data analytics approach. 

Salehan and Kim, 2015 Sentiment mining approach 
Studying predictors of online consumer review 

performance. 

Chong et al., 2016 Neural network approach 
Exploring significant variables influencing product sales 

using a neural network. 

Zhang et al., 2017 Data-based analytics for Product Lifecycle 
Leveraging data analytics and service-driven patterns for 

product lifecycle management. 

Khurana & Kumar, 2017 Linear discriminant analysis 
Implementing data analytics in inventory management to 

find dependencies. 

Zhao et al., 2016 
Extracting uncertain parameters for green 

supply chain 
Redesigning a green supply chain using historical data. 

Subhakanta & Mohanty, 
2018 

Deterministic linear programming model 
Addressing a transportation problem with uncertain costs 
and demands using deterministic linear programming. 

Jing Wang et al., 2020 and 
Kapil et al., 2021 

Data-driven optimization techniques 
Enhancing SCM in uncertain environments through 
machine learning and data analytics. 

Chen, 2021 
Lost-sales inventory control problem with 
active exploration 

Addressing an inventory control problem with active 
exploration and uncertainty in demand distributions. 

Mohan et al., 2021 
Time series analysis and simulated annealing 

algorithm 

Devising strategies for demand forecasting and route 

optimization in SCM 

Singh et al, 2023 Bibliometric statistical analysis on SCA 
Identifying key research themes for SCM and providing a 
foundation for future studies in this area 

Nahum, Méndez-Sánchez, 

2023 

Machine Learning for predicting electricity 

consumption 

Demonstrating the applicability of data analytics method 

in the context of SCM for accurate prediction 

Nguyen, T, 2023 
AI-based techniques for demand forecasting in 

SCM: A review of 2013-2023 literature. 

Demonstrating prominent trend in application of hybrid 

methods for demand forecasting in SCM and challenges of 
AI-based methods in selecting suitable inputs.  

Suwignjo , P et al., 2023 Gradient boosting model  
Predicting the occurrence of inventory overstock and 
understock by using classification and regression models.  

Amellal et al, 2023 a hybrid model combining LSTM and CNN 
Overcoming the issue of lead time information in SCM for 
the logistics and distribution network section. 
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TABLE 2  

VARIABLES OF THE SUPPLY CHAIN 

Variables Indexes Layers (components) 

Consumption of first raw material (per unit of kg) 𝑥1 

Manufacturing Consumption of second raw material (per unit of kg) 𝑥2 

Consumption of third raw material (per unit of kg) 𝑥3 

Storage of raw material (I) 𝑥4 

Warehousing Storage of raw material (II) 𝑥5 

Storage of raw material (III) 𝑥6 

First raw material purchasing price 𝑥7 

Procurement 

Second raw material purchasing price 𝑥8 

Third raw material purchasing price 𝑥9 

First raw material inputs subsidy 𝑥10 

Second raw material inputs subsidy 𝑥11 

Third raw material inputs subsidy 𝑥12 

Firs raw material Purchasing Quantity 𝑥13 

Second raw material Purchasing Quantity 𝑥14 

Third raw material Purchasing Quantity 𝑥15 

Freight Charges (suppliers to factory) 𝑥16 

Logistic/transportation Transportation Cost (factory to distributors) 𝑥17 

Order Size (distributors) 𝑥18 

Shelf Price 𝑥19 

Demand 

Currency exchange 𝑥20 

Consumer price index 𝑥21 

Inflation Rate 𝑥22 
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TABLE 3  

RESULTS FOR PRODUCTION 

Production Coef. Std. Err. 𝑧 𝑃 > |𝑧| [95% Conf. Interval] 

-----------------+--------------------------------------------------------------------------------------------------------- 

𝑥1   | 97593.59 222695 0.44 0.661 -338881 534067 .7 

𝑥2   | -237101.3 524465.7 -0.45 0.651 -1265035 790832.6 

𝑥3   | -1534.438 3919.006 -0.39 0.695 -9215.55 6146.673 

𝑥4   | 0.221107 0.012325 17.9 0 0.196951 0.245263 

𝑥5   | 0.14155 0.01231 11.5 0 0.117423 0.165678 

𝑥6   | 1.896452 0.137458 13.8 0 1.62704 2.165865 

𝑥7   | 0.014487 0.033645 0.43 0.667 -0.05146 0.08043 

𝑥8   | 0.006707 0.015286 0.44 0.661 -0.02325 0.036667 

𝑥9   | 0.050431 0.114288 0.44 0.659 -0.17357 0.274432 

𝑥10 | 2.629571 5.923298 0.44 0.657 -8.97988 14.23902 

𝑥11 | -2.462099 5.551389 -0.44 0.657 -13.3426 8.418423 

𝑥12 | -0.265546 0.613631 -0.43 0.665 -1.46824 0.937148 

𝑥13 | 0.001009 0.001019 0.99 0.322 -0.00099 0.003006 

𝑥14 | 0.000255 0.000204 1.25 0.211 -0.00015 0.000655 

𝑥15 | -0.012652 0.005155 -2.45 0.014 -0.02276 -0.00255 

𝑥16 | -239563.6 545887 -0.44 0.661 -1309482 830355.3 

𝑥17 | 400218.4 897608.2 0.45 0.656 -1359061 2159498 

𝑥18 | 0 (omitted) 
    

𝑥19 | -0.00213 0.000782 -2.72 0.006 -0.00366 -0.0006 

𝑥20 | 0 (omitted) 
    

𝑥21 | 0 (omitted) 
    

𝑥22 | 0 (omitted) 
    

_cons | -33881.01 103491 -0.33 0.743 -236720 168957.7 
 

 

 



34 

 

TABLE 4  

RESULTS FOR SALE 

 

Sale Coef. Std. Err. z P>|z| [95% Conf. Interval] 

-----------------+--------------------------------------------------------------------------------------------------------- 

𝑥1   | 252562.3 225174.2 -1.12 0.262 -693896 188770.9 

𝑥2   | -605025 530300.7 1.14 0.254 -434345 1644396 

𝑥3   | -4668.31 3962.623 1.18 0.239 -3098.28 12434.91 

𝑥4   | 0.192825 0.012238 -15.8 0 -0.21681 -0.16884 

𝑥5   | 0.098772 0.012161 -8.12 0 -0.12261 -0.07494 

𝑥6   | 1.73389 0.134552 -12.9 0 -1.99761 -1.47017 

𝑥7   | 0.037457 0.03402 -1.1 0.271 -0.10414 0.029221 

𝑥8   | 0.017453 0.015456 -1.13 0.259 -0.04775 0.012841 

𝑥9   | 0.131243 0.115561 -1.14 0.256 -0.35774 0.095253 

𝑥10 | 6.742258 5.989259 -1.13 0.26 -18.481 4.996474 

𝑥11 | -6.31508 5.613214 1.13 0.261 -4.68662 17.31677 

𝑥12 | -0.69629 0.620463 1.12 0.262 -0.51979 1.912379 

𝑥13 | -0.00048 0.001027 0.47 0.638 -0.00153 0.002494 

𝑥14 | 0 (omitted) 
   

  

𝑥15 | 0 (omitted) 
   

  

𝑥16 | -610217 551967.5 1.11 0.269 -471620 1692053 

𝑥17 | 1028013 907600.1 -1.13 0.257 -2806877 750850.1 

𝑥18 | 0.000448 0.000206 -2.18 0.03 -0.00085 -4.4E-05 

𝑥19 | -0.00143 0.000738 1.94 0.043 -1.7E-05 0.002876 

𝑥20 | 0 (omitted) 
   

  

𝑥21 | -0.02321 0.005192 4.47 0 0.013034 0.033385 

𝑥22 | 0 (omitted) 
   

  

_cons | -99128.2 104646.4 0.95 0.344 -105975 304231.3 
 

 

TABLE 5  

OPERATIONAL PROFIT FOR INEFFICIENT PRODUCTS 

Product Number 
Previous Operation 

Profit (rial) 

Optimized Operation 

Profit (rial) 
Deviation (rial) 

1 (373,381) 25,619 399,000 

2 (31,877) 45,723 77,600 

3 (70,080) 2,640 72,720 

4 (127,859) 182,141 310,000 

5 (458,744) 6,256 465,000 

6 (15,948) 216,552 232,500 

7 (178,771) 13,529 192,300 

8 (134,055) 28,245 162,300 

9 (217,158) 118,856 336,014 

10 (130,906) 32,994 163,900 

11 (96,140) 88,000 184,140 
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FIGURE 1  

STUDIES CLASSIFICATION FRAMEWORK (Nguyen et al, 2017) 

 

 

 
 

FIGURE 2  

STEPS OF THE METHOD 
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FIGURE 3  

THE HOTELLING CONTROL CHART 
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FIGURE 4  

CORRELATION CHART OF SIGNIFICANT VARIABLES VERSUS RESPONSE VARIABLES 
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Product 1 Product 2 

  

Optimal Values of Variables Optimal Values of Responses 

𝑋4 𝑋5 𝑋6 𝑋19 𝑌1 𝑌2 

1578157.3 5943327.9 107428.7 1259582.7 632451.62 29517.72 
 

Optimal Values of Variables Optimal Values of Responses 

𝑋4 𝑋5 𝑋6 𝑋19 𝑌1 𝑌2 

1747329.76 5256899.76 31692.86 332510.77 156518.69 64864.55 
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Product 3 Product 4 

  
Optimal Values of Variables Optimal Values of Responses 

𝑋4 𝑋5 𝑋6 𝑋19 𝑌1 𝑌2 

787006.46 2188932.32 14411.93 306560.63 191246.33 34566.37 
 

Optimal Values of Variables Optimal Values of Responses 

𝑋4 𝑋5 𝑋6 𝑋19 𝑌1 𝑌2 

1845806.651 4883508.222 3325.239 1365077.877 924085.20 24034.37 
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Product 5 Product 6 

  

Optimal Values of Variables Optimal Values of Responses 

𝑋4 𝑋5 𝑋6 𝑋19 𝑌1 𝑌2 

1911521.34 5328854.70 22809.05 1415040.85 919001.22 72457.67 
 

Optimal Values of Variables Optimal Values of Responses 

𝑋4 𝑋5 𝑋6 𝑋19 𝑌1 𝑌2 

1702549.48 4133531.49 13233.76 1020701.47 740124.7 143583.7 
 

 

  



41 

 

Product 7 Product 8 

  

Optimal Values of Variables Optimal Values of Responses 

𝑋4 𝑋5 𝑋6 𝑋19 𝑌1 𝑌2 

1855938.6 4746404.8 139200.9 279444.3 341750.14 44521.19 
 

Optimal Values of Variables Optimal Values of Responses 

𝑋4 𝑋5 𝑋6 𝑋19 𝑌1 𝑌2 

1051558.68 2845480.90 14123.55 494075.27 494075.27 41172.41 
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Product 9 Product 10 

  

Optimal Values of Variables Optimal Values of Responses 

𝑋4 𝑋5 𝑋6 𝑋19 𝑌1 𝑌2 

1616372.36 3823086.66 11215.36 948125.28 694692.1 134070.2 
 

Optimal Values of Variables Optimal Values of Responses 

𝑋4 𝑋5 𝑋6 𝑋19 𝑌1 𝑌2 

1616372.36 3823086.66 11215.36 948125.28 694692.1 134070.2 
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Product 11 

 

Optimal Values of Variables Optimal Values of Responses 

𝑋4 𝑋5 𝑋6 𝑋19 𝑌1 𝑌2 

1872321.108 4458484.526 2382.511 1313771.473 954517.5 134657.9 
 

 

FIGURE 5  

JOINT OPTIMIZATION PLOTS 

 


