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Abstract: Due to the limited availability of natural resources like water, an efficient approach in 1

selecting water pipeline routes is so crucial for sustaining human life. Exposed to weaknesses such as 2

time-consuming procedures and a lack of comprehensive data processing inherent in traditional route 3

selection methods, this study is aimed to present an integrated model using a Sparse Deep Neural 4

Network (DNN) and the Fuzzy VIKOR method to optimize water pipeline route selection. A case 5

study involving six new water pipeline routes between two provinces is presented to develop the 6

model. The study employs a penalized multi-task deep learning model to train on elements of a fuzzy 7

decision matrix which was built on data from 71 existing pipeline routes. The model then predicts the 8

new fuzzy decision matrix elements for six new routes. Finally, the Fuzzy VIKOR method is applied 9

to this new decision matrix to prioritize the six new routes for transmitting water between two areas. 10

The results show that routes 04, 06, and 03 have been identified as optimal choices. This integrated 11

approach streamlines route selection, enhancing the efficiency and effectiveness of decision-making 12

problems. 13

Keywords: Deep Learning, Penalized Neural Network, Variable Selection, Fuzzy VIKOR 14

1. Introduction 15

Water covers about 71% of the Earth’s surface, though only 2.5% of it is consumable 16

by people which makes it so crucial in sustaining human life. Nowadays, a vast amount of 17

water is being conveyed through an extensive network of pipelines that span millions of 18

kilometers globally. In this regard, a systematic approach in selecting the most appropriate 19

route can potentially reduce project costs, mitigate negative impacts, and ensure long-term 20

benefits; thus, pipeline routing is essential infrastructure for the efficient, effective, and reli- 21

able conveyance of natural resources like water (Ayadi et al.[1]). Moreover, determining an 22

appropriate approach for selecting the water pipeline route is also crucial for governments, 23

as it helps prevent economic losses and ensures the safe conveyance of consumable water 24

(Almheiri et al.[2]). Conventionally, identifying pipeline routes entailed a manual process 25

of determining the shortest distance between two locations on a topographic map and 26

gathering all relevant data along the route to evaluate its feasibility. Despite the capabilities 27

of this method, its efficacy is considerably constrained due to its time-consuming nature 28

and limited ability to process information that can ultimately undermine the accuracy of 29

the final result (Bayramov et al.[3]). An additional requirement is to ensure that the chosen 30
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routes do not disrupt the daily activities of the region, while also minimizing any losses 31

and avoiding future failures; thus, a proper route selection method can effectively mitigate 32

any negative impacts on society (Sivakumar et al. [4]). Concerning these multi-criteria 33

problems, an integrated data-driven model in the terms of decision support systems can 34

facilitate the decision-making process while enhancing the accuracy of problem outcomes 35

(He et al. [5]). Accordingly, this paper provides an integrated approach involving a Sparse 36

Deep Neural Network and Fuzzy VIKOR method to optimize route selection for a water 37

transmission project. The criteria were categorized into three sections: operational, envi- 38

ronmental, and socio-economic. A case study was chosen to implement the research model 39

and determine the best routes for transmitting water through the pipeline network. 40

In the following, we will begin with a literature review of related methods and concepts. 41

Subsequently, we will discuss the models and research methodologies in detail, followed 42

by the application of the method in a real case in section four. Finally, we will interpret 43

the analytical results in the Discussion section to draw conclusions in the final part of this 44

research. 45

While earlier research has applied fuzzy techniques and optimization methods to 46

optimize pipeline route selection (Davarpanah [6]), the recent increase in the complexity 47

and scale of data have rendered traditional approaches inadequate in some scenarios. 48

Moreover, the importance of multi-criteria evaluation in assessing the performance of 49

pipeline route selection projects has become increasingly recognized. Therefore, the need 50

for efficient decision-making systems that incorporate the latest advances in artificial 51

intelligence techniques is more important than ever (He et al. [5]). As a result, the following 52

literature review is divided into two sections including the pipeline studies for defining all 53

determinant factors in selecting optimum routes and the combination of machine learning 54

and multi-criteria decision-making method in related studies. 55

According to the topic of transmission lines and pipelines, studies can be categorized 56

into four groups, including spatial analysis and routing selection based on multi-criteria 57

decision-making (MCDM) methods, determining geomatics indexes for optimal pipeline 58

route selection, optimization methods via evolutionary algorithms (EA), and improvement 59

of route optimization algorithms in water transmission pipeline routes. 60

The first group of studies,which is the focus of this article, uses various multi-criteria 61

decision-making techniques and spatial analyses in GIS for optimizing the routing of 62

transmission lines and roads. For instance, Ghasemi et al.[7] used both quantitative and 63

qualitative criteria, like road slope, infrastructure, soil type, and environmental factors, to 64

determine the water transmission route to agricultural lands. Naseri et al.[8] used a com- 65

bination of GIS and MCDM to select suitable sites for fluid distribution points to provide 66

artificial irrigation for underground water. The study’s criteria were almost geological types 67

including distances from wells and roads, depth of groundwater, soil permeability, quality 68

of groundwater, topographic slope, and lithological units. Asgharipour Dasht Bozorg et 69

al[9] used the AHP method in GIS to select suitable areas for providing artificial irrigation 70

using flood-spreading practices. They examined seven effective factors, including slope, 71

permeability, fluid quality, runoff thickness, conveyance capacity, drainage density, and 72

land use in the study area, and calculated the weight of each factor using the "AHP" method. 73

Then, they integrated the "GIS" analytical functions and the "AHP" method to determine 74

routes in four classes ranging from very suitable to unsuitable. Similarly, Sadeghi [10] 75

used a multi-criterion feature to determine the shortest water transmission line, while 76

Abedian et al.[11] used the shortest path algorithm in routing the road network. Bagli et 77

al. [12] applied a combination of the least cost path analysis (LCPA) and MCDM method 78

to determine power line routes. In this study, several criteria with different weights were 79

considered to compare and rank routes. Peng [13] performed a similar study to determine 80

the road route, but used sensitivity analysis to determine the final route while considering 81

multi-criteria decision-making methods. Yildirim et al.[14] carried out a study on selecting 82

pipeline routing in which they used an integrated multi-criteria decision making including 83

an analytic hierarchy process and the TOPSIS method. Additionally, there are several 84
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studies concerning the optimal route selection projects which are used the integration 85

of GIS and MCDM approaches that are included Fu [15]; Aguda and Uyeh[16]; Akıncı 86

et al.[17]; Jelokhani-Niaraki et al.[18]. Finally, Yildirim and Kadi [19] used multi-criteria 87

decision-making and the GIS method to suggest solutions for new path construction. 88

The second group of studies relates conceptually to studies conducted with the aim 89

of providing an index for routing that can be leveraged in other routing studies. In this 90

regard, Moradgholi [20] conducted research to determine the optimal path by utilizing 91

three methods including the Ordered Weighted Averaging (OWA), integrated Boolean and 92

WLC approaches, and the cost layer in routing. The resulting index was developed with 93

the intent of being effectively utilized in routing problems. Hamid-Mosaku et al. [21] also 94

developed an index for routing gas transmission lines using artificial neural networks. 95

The third group of studies utilizes evolutionary and swarm intelligence algorithms 96

for optimization purposes in transmission line routing. Beheshtifar et al. [22] determined 97

the suitable route for power transmission lines based on GIS method in which they applied 98

a multi-objective genetic algorithm for this purpose. This method has been implemented 99

for the optimal routing of a 400 kilo-volt power transmission line. Li et al. [23] presented 100

a route design using a modified ant colony optimization algorithm (ACO) and GIS to 101

maximize population coverage using it. Ebrahimipour et al. [24] utilized Global Positioning 102

System (GPS) techniques and genetic algorithms to solve problems related to optimal 103

path determination for water transmission lines. comparing the paths extracted from 104

the genetic algorithm with the existing path, it is shown that the cost decreases by 20%, 105

mainly due to the reduction in pipeline length and fewer intersections with the river and 106

road. As newer solutions, researchers are currently conducting preliminary studies on 107

using game theory and combining it with evolutionary approaches for routing (Vahidnia 108

et al[25]). A study of pipeline systems selection was conducted by Marcoulaki et al.[26] 109

which examined optimization objectives for capital cost and energy consumption when 110

the project is operated in terms of reparation cost, risk of project to the environment and 111

maintenance issues. De Lucena et al.[27] applied genetic algorithm to solve multi-objective 112

problem concerning route optimization of submarine pipeline. Liang et al.[28] used general 113

genetic algorithm to solve the automatic route model for optimizing pipeline selection. 114

Baeza et al.[29] compared two algorithms, Ant Colony optimization and Dijkstra algorithm 115

for optimal ore concentrate pipeline routing. Kang and Lee [30] applied methods of least 116

cost path (LCP) and smoothing algorithm in pipeline route selection. Maliki and Farizal 117

[31] developed a goal programming model included a genetic algorithm for selecting 118

the optimum route for a pipeline project. Gitau and Mundia [32] proposed Geographic 119

Information System technique (GIS) and Remote Sensing (RS) for selecting pipeline route. 120

The fourth category of research is comprised of studies that focus on improving the 121

routing algorithm and its technical aspects. As an example, Antikainen et al. [33] presented 122

a method to minimize the complexity of the model for extracting the minimum cost path. 123

Murekatete and Shirabe [34] evaluated the effect of the raster scale on routing results, and 124

also provided solutions for situations where standard maps are not at the same scale. 125

The table 1 below provides a concise overview of the significant research carried out 126

on the pipeline routing topic. 127
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Table 1. Relative Studies.

Papers Methodologies Results

[24] Ebrahimipour et al. 2006 GPS, genetic algorithms Reduction of pipeline length and fewer intersections with river and road in optimal path determination

[7] Ghasemi et al. 2009 Quantitative and qualitative criteria, GIS

Determined the water transmission route to agricultural lands by considering quantitative and qualitative criteria, such

as road slope, infrastructure, fault and soil type, and environmental factors. Showed that significant reductions in

environmental damage can be achieved by considering even a small percentage of environmental objectives.

[8] Naseri et al. 2009 GIS, MCDM
Used an integrated decision support system, including GIS and MCDM, to select suitable locations for fluid distribution

points in order to provide artificial irrigation for underground water.

[20] Moradgholi 2005

Ordered Weighted Averaging (OWA),

integrated Boolean and WLC ap-

proaches, and the cost layer in routing

Conducted research to determine the optimal path by utilizing three methods including the OWA, integrated Boolean and

WLC approaches, and the cost layer in routing. Developed an index for routing problems.

[23] Li et al. 2009 Modified ant colony optimization algorithm Route design using ACO and GIS to maximize population coverage

[12] Bagli et al. 2011
Least cost path analysis (LCPA), multi-

criteria decision-making method

Used the combination of the LCPA and multi-criteria decision-making method to determine the routing of power lines.

Considered various criteria with different weights to compare and rank proposed routes and determined the final score of

each route using a weighted linear combination method.

[13] Peng 2011
Sensitivity analysis, multi-criteria

decision-making methods
Used sensitivity analysis to determine the final road route while considering multi-criteria decision-making methods.

[22] Beheshtifar et al. 2012 GIS-based method, multi-objective GA Optimized routing of a 400-kilovolt power transmission line

[26] Marcoulaki et al. 2012 Optimization objectives Examined optimization objectives for capital cost and energy consumption in pipeline systems selection

[9] Asgharipour Dasht

Bozorg et al. 2013
AHP method, GIS

Used AHP method in GIS to select suitable areas for providing artificial irrigation using flood-spreading practices.

Examined seven effective factors, including slope, permeability, fluid quality, runoff thickness, conveyance capacity,

drainage density, and land use, and determined routes in four classes ranging from very suitable to unsuitable.

[17] Akıncı et al. 2013
Integration of GIS and MCDM ap-

proaches
Used the integration of GIS and MCDM approaches for optimal route selection projects.

[33] Antikainen et al. 2013 Model simplification Method to minimize model complexity and reduce calculation time for extracting minimum cost path

[10] Sadeghi 2014 Multi-criterion feature Used a multi-criterion feature to determine the shortest water transmission line.

[27] De Lucena et al. 2014 Genetic algorithm Optimization of submarine pipeline route

[11] Abedian et al. 2015
Shortest path algorithm in routing

the road network
Used the shortest path algorithm in routing the road network of Kordkoi, Bandargaz, and Golugah cities.

[16] Aguda and Uyeh 2016 Integration of GIS and MCDM approaches Used the integration of GIS and MCDM approaches for optimal route selection projects.

[14] Yildirim et al. 2017
Integrated multicriteria decision making, ana-

lytic hierarchy process, and the TOPSIS method

Conducted a study on selecting pipeline routing and used an integrated multicriteria decision-making

approach including the analytic hierarchy process and the TOPSIS method.

[28] Liang et al. 2017 General genetic algorithm Automatic route model for optimizing pipeline selection

[29] Baeza et al. 2017 Ant Colony Optimization, Dijkstra algorithm Comparison of algorithms for optimal ore concentrate pipeline routing

[30] Kang and Lee 2017 Dijkstra least cost path, Laplacian Comparison of two methods for pipeline route selection

[32] Gitau and Mundia 2017 GIS, Remote Sensing Selection of pipeline routes using GIS and remote sensing

[15] Fu 2018 Integration of GIS and MCDM approaches Used the integration of GIS and MCDM approaches for optimal route selection projects.

[18] Jelokhani-Niaraki et al 2018 Integration of GIS and MCDM approaches Used the integration of GIS and MCDM approaches for optimal route selection projects.

[25] Vahidnia et al.

2019
Game theory, evolutionary approaches Preliminary studies on using game theory and evolutionary approaches for routing

[31] Maliki and Farizal 2019 Goal programming, genetic algorithm Selection of optimum route for a pipeline project using goal programming and a genetic algorithm

[19] Yildirim and Kadi

2020

Multi-criteria decision-making

and GIS routing

Used multi-criteria decision-making and GIS routing to improve existing forest paths and proposed

solutions for new path construction.

[21] Hamid-Mosaku et

al. 2020

Artificial neural networks for developing an

index for routing gas transmission lines.
Developed an index for routing gas transmission lines using artificial neural networks.

[34] Murekatete and

Shirabe 2021
Raster scale evaluation Evaluation of effect of raster scale on routing results and solutions for situations with non-standard maps
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The paper aims to explore the intersections between MCDM and Deep Learning 128

(DL) in pipeline route selection, an area that has not been thoroughly investigated. While 129

a few contributions have attempted to combine MCDM with forecasting and machine 130

learning techniques (Repetto [35]), the studies in pipeline route selection remains relatively 131

unexplored. For instance, Bhowmik [36] applied an integrated optimization approach 132

included machine learning algorithms to select optimal pipeline routes. This study caused 133

a significant reduction of operation costs up to 20% in comparison with conventional 134

process. The method also incorporated on-bottom stability criteria and other constraints to 135

evaluate potential routes and minimized the length and cost of mitigating procedures. In 136

another study, Rolka et al. [37] presented a hybrid logical-arithmetic method for selecting 137

optimal flight routes, incorporating multi-criteria decision-making using the technique 138

for order preferences by similarity to an ideal solution (TOPSIS) method. Furthermore, 139

Koohathongsumrit and Meethom [38] proposed a combination of MCDM and ML approach 140

for route selection in multi-modal supply chains, addressing the complexities of this domain. 141

Additionally, Stoilova and Munier [39] introduced a novel fuzzy multiple criteria time 142

series modeling method based on fuzzy linear programming and sequential interactive 143

techniques. They successfully applied this method to urban transportation planning. 144

1.1. Contributions of Current Study 145

However, applying an appropriate integrated technique for selecting pipeline route 146

could be perplexing considering wide range of variations in the water pipeline route selec- 147

tion which are included operational, environmental, economic and social issues; moreover, 148

according to the former studies, there are different MCDM models, all of which are inte- 149

grated with weighting methods using decision-makers opinion like AHP, ANP, ELECTRE 150

and so forth, though these methods have some considerable disadvantages including the 151

different number of decision-makers could have varying effects on determining the weights 152

of criteria (Kaya and et al. [40]), lack provision to check the consistency of decision-makers’ 153

opinions (Alinezhad and Khalili [41]), additional analysis is needed for results verification 154

(Siksnelyte-Butkiene et al. [42]), interdependence between criteria which might lead to 155

inconsistencies between judgment and rankings (Velasquez and Hester [43]). Moreover, 156

these methods rely on extensive data collection through questionnaires’ that can be so 157

time-consuming, costly, and labor-intensive. 158

The issue of interdependence is a concern for MCDM methods, as they may encounter 159

situations where some criteria used in decision-making are interdependent. The inclusion 160

of such irrelevant criteria introduces unnecessary complexity and inconsistency in the 161

decision-making process. Moreover, an abundance of features or criteria in a problem, 162

like in high-dimensional settings, intrinsically accumulates noise by the existence of many 163

redundant factors that do not contribute to the decision-making process (Ghorbani [44]). 164

Penalized models like LASSO, QUADRO, and Penalized Neural Network address these 165

issues by selecting the main contributing features through dimension reduction (James et 166

al. [45] Fan et al. [46] Sato [47]). Therefore, an integrated deep learning model with MCDM 167

method can bring more reliable decision-making processes. It would also address the issue 168

of interdependence and reduce the need for manual interventions like data gathering and 169

analysis in making decisions. Given these disadvantages, this paper proposes an integrated 170

model that combines a deep learning approach with the fuzzy VIKOR method to select the 171

optimal water transmission route based on sustainable development criteria. 172

2. Material and Methods 173

2.1. Principal Component Analysis 174

Principal Components Analysis (PCA) represents an unsupervised learning approach 175

involving the computation of principal components. These components are subsequently 176

utilized to comprehend the data. One valuable aspect of PCA is its ability to discover a low- 177

dimensional representation within a variation dataset. The idea is that each n observation 178

lives in p-dimensional space, but not all these dimensions are equally interesting. PCA 179
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aims to identify a concise set of dimensions that maximize interest, where the concept 180

of interest is measured by the amount that the observations vary along each dimension. 181

All the principal components of a set of features X1, X2, ..., Xp are the normalized linear 182

combination of the features: 183

Zi = ϕ11X1 + ϕ21X2 + + ϕp1Xp,

that has the largest variance. Where (i = 1, . . . , p). In this case, normalized would 184

mean that 185

p

∑
j=1

ϕ2
ji = I; (i = 1, ..., p).

After computing the principal components, we attain a low-dimensional view of the 186

data. It is important to know how much information is lost by projecting the observations 187

onto the first few principal components. Stated differently, it reveals the portion of data 188

variant not contained by these primary components. To argue this, we look at the proportion 189

of variance explained by each principal component. If the cumulative proportion of those 190

few selected principal components covers a significant proportion of the data variance, 191

selecting those few components instead of the entire features can be notably reliable (James 192

et al. [45]). 193

2.2. Artificial Neural Network (ANN) 194

A neural network is a subset of machine learning that employs a network of functions 195

to comprehend and transform input data from one form into a desired output. In other 196

words, a neural network takes an input vector comprising of p variables X = (X1, X2, ..., Xp) 197

and builds a nonlinear function f (X) to forecast the response Y. These networks are inspired 198

by early models of sensory processing in the human brain, simulating the way biological 199

neurons transmit signals to each other (Krogh [48]). Neural networks consist of an input 200

layer, one or more hidden layers, and an output layer. Each layer consists of multiple nodes 201

or units that perform mathematical operations on the input data and pass it to the next 202

layer. In the figure below, you can see an ANN architecture with one hidden layer (James 203

et al. [45]). 204

Figure 1. Architecture of a neural network with a single hidden layer. (Abraham [49])

2.3. Regularization by l1 Penalty 205

When fitting a model, a technique exists that regularizes the coefficient estimates 206

through pulling the coefficient estimates closer to zero. It turns out that shrinking the 207

coefficient estimates can significantly reduce the variance. In ANN, the loss function, the 208

loss optimization algorithm or other techniques have these various properties (Kukačka et 209

al. [50]). The application of an l1 penalty function is a prevalent approach in regression, 210
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initially introduced by Tibshirani [51]. He outlined a method known as the LASSO, which 211

stands for ’least absolute shrinkage and selection operator for parameter estimation. Regu- 212

larization through the l1 penalty yields simpler and more interpretable models, involving 213

only a subset of predictors. This leads to a coefficient estimate vector with a relatively small 214

number of non-zero elements which is called sparsity. In the context of ANNs, regular- 215

ization eliminates units that don’t contribute to the prediction task (Florkowski [52]). The 216

following figure 2 shows this concept: 217

Figure 2. Sparse neural network in comparison with standard neural network. Figure (a) is a standard
neural network in which coefficient for nodes’ function are non-zero. Figure (b) is a neural network
with l1 penalization where nodes functions has small number of non-zero coefficient [52]. As a result,
some nodes are dropped out of the calculation for the next layer.

2.4. VIKOR 218

VIKOR, which stands for Vlsekriterijumska Optimizacija I Kompromisno Resenje, was 219

developed in 1998 by Opricovic [53]. This method is used to optimize the multi-criteria of 220

complex systems. VIKOR is a powerful technique for resolving MCDM problems involving 221

various alternatives and conflicting criteria. Moreover, to address the issues of uncertainty 222

more effectively, Fuzzy VIKOR (or FVIKOR) was introduced. This model interprets the 223

linguistic preference of each criterion assigned by the experts to a fuzzy set (Rezaei [54]). 224

To implement FVIKOR, first a decision-making matrix should be formed which is assumed 225

that the problem has y alternatives and x criteria. where Xij refers to the fuzzy set of i-th 226

alternative with respect to j-th criterion, (lij, mij, uij). To assign weight to each criterion 227

based on its preferential value, it is necessary to interview several experts in the field to 228

gather their opinions. Subsequently, these linguistic terms can be translated into numerical 229

values using the table 2 (Sadeghi et al. [55]). 230

Table 2. Triangular fuzzy number of five-point Likert scale.

Triangular Fuzzy Number (l,
m, u) Fuzzy Number Linguistic Variables

(0,0,0.25) 1 Very Unimportant (VU)
(0,0.25,0.5) 2 Unimportant (U)

(0.25,0.5,0.75) 3 Moderately Important (MI)
(0.5,0.75,1) 4 Important (I)
(0.75,1,1) 5 Very Important (VI)

All the experts’ opinions will be gathered and aggregated into a single triangular 231

fuzzy number for further analysis on each criterion. Then equations (1) and (2) utilized to 232

determine the best f ∗j and the worst f−j values of all criterion functions (Opricovic [53]) 233

f ∗j = max(xij), f−j = min(xij), for positive criteria. (1)
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f ∗j = min(xij), f−j = max(xij), for negative criteria. (2)

The next steps are to compute the ideal and anti-ideal values through measuring the 234

values of Si and Ri and Qi as following equations: 235

Si =
n

∑
i=1

w( f ∗j − f ij)

( f−j − f ij)
.

Ri = maxi
w( f ∗j − f ij)

( f−j − f ij)
.

Qi =
v(Si − S∗)

(S− − S∗)
+

(1 − v)(Ri − R∗)

(R− − R∗)
,

Where S∗ = minjSj, S− = maxjSj, R∗ = minjRj and R− = maxjRj. Furthermore, a 236

parameter v is introduced to balance the weight between the strategy of maximum group 237

utility and the weight of individual regret, denoted as (1 − v). By minimizing minj Sj, 238

the solution achieves maximum group utility, whereas minimizing minj Rj results in the 239

solution with minimum individual regret for the "opponent." Normally, the value of v is 240

taken as 0.5. However, v can take any value between 0 to 1. Then rank the alternatives 241

based on their values for S, R, and Q in decreasing order. Next, propose alternative A1 as 242

the compromise solution, as it is the best-ranked alternative according to the measure Q 243

(minimum), if the following two conditions are satisfied: 244

a description Acceptable advantage is defined as Q((A2))− Q((A1)) ≤ DQ, where 245

DQ = 1/(j − 1), and A2 represents the alternative with the second position in the 246

ranking list based on the parameter Q. 247

b Acceptable decision-making stability is achieved when alternative A1 is ranked as the 248

best option by either S or R or both. This compromise solution ensures stability within 249

the decision-making process, which could be based on the strategy of maximizing 250

group utility (when v > 0.5 is required), reaching a consensus (v > 0.5), or utilizing a 251

veto (v < 0.5). 252

If any of the conditions are not satisfied, a set of compromise solutions can be proposed 253

as follows: 254

1 If only condition b is not satisfied, the following alternatives can be considered: 255

Alternative A1 and A2. 256

2 Alternatives A1, A2, ..., AM if condition 1 is not satisfied. AM is determined by the 257

relation Q(AM − A1) < DQ for maximum M (the positions of these alternatives are 258

“in closeness”). 259

3 If condition 1 is not satisfied, a range of alternatives, including A1, A2, ..., AM, can be 260

explored. Here, AM is determined by the relation Q(AM − A1) < DQ for maximum 261

M, where the positions of these alternatives are ordered in terms of their closeness. 262

2.5. Sustainable Development 263

Sustainable development is an inclusive approach that seeks to balance diverse needs 264

while taking into account environmental, social, and economic constraints in decision- 265

making processes. It involves anticipating the broader and long-term consequences of 266

development activities (Sonal [56]). Numerous studies have proposed frameworks and 267

methodologies for identifying sustainable development factors in the context of route 268

selection. Zhang [57] considered economic development factors in optimizing dispositions 269

of water resources. Batisha et al. [58] extended this perspective by maintaining efficient 270

operational and functional factors in transmitting process while taking to account the 271

objectives of optimization, climatic fluctuation, and economic aspects. Zhang and Zeng 272

[59] considered environmental conditions and environmental protection as major factors 273
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in sustainable development of water resources. Mohamadi & Shojaie [60] introduced a 274

comprehensive criterion containing environmental, economic and construction aspects in 275

establishing a sustainable development system for selecting pipeline routes. Evidently, 276

route selection process requires a holistic approach involving a range of social, environ- 277

mental, economic, and operational criteria. Accordingly, the following criteria within three 278

primary aspects of sustainable development were derived from prior research to define 279

features in the ongoing case study of water pipeline transmission. These criteria have been 280

organized in the subsequent table 3, maintaining the essential problem features. 281

Table 3. Problems Features based on Sustainable Development Indexes.

Sections Features (Criteria) Context in Current Study Variables

O
pe

ra
ti

on
al

Water Pipeline Length Capacity Requirements for the Entire Water Conservancy Pipeline Project (Dimension, Km) X01
Water Resource Pooling (liquid-

ity aggregation)

When encountering extreme changes in height, such as in very high or very low regions, the phenomenon

of liquid aggregation occurs at turning points (Dimension, Number).
X02

Pressure variation (elevation

head)

In places with liquidity aggregation, there is twice as much pressure variance compared to other areas

(Dimension, Number).
X03

Water Pumping Station To enhance the water pressure within the pipeline (Dimension, Station). X04

Pipe Corrosion
In swampy areas, where water can cause corrosion, the installation of additional stations is crucial to

prevent pipeline corrosion (Dimension, Station)
X05

Line break valve
Enhancing Pipeline Safety and Efficiency: Mitigating Water Hammer Phenomenon by Adjusting the

Closing Rate of Line Break Valve (Dimension, Number)
X06

Freezing of water pipelines
Moisture in winter can freeze and form ice crystals, leading to blockages within pipelines (Dimension,

Number)
X07

Road Construction with Level

Terrain (Being flat to build ROW)

Topography or Slope of the terrain, ensuring roads are built on flatter surfaces, the process of constructing

ROWs becomes significantly smoother and more efficient (Dimension, Percent)
X08

Natural Twists and Curves of

the Route for Constructing the

Pipeline

More meandering twists and curves found along the route cause displacement of certain farms along the

way (Dimension, inch)
X09

Crossing Natural Barriers
Pipeline routes encounter various natural obstacles like lakes, mountain passes, and other geographical

features (Dimension, Number)
X10

Crossing Passing from artificial

barrier
These barriers include asphalt roads, paths, and railways (Dimension, Number) X11

En
vi

ro
nm

en
ta

l

Pig running Pollution been subsiding in the pipeline should be cleaned off (Dimension, Yearly) X12

Deforestation (cutting the trees)
Cutting down trees should be avoided to preserve forest and nature for transmitting water pipeline

(Dimension, Km)
X13

Pasture damage Mitigating pasture damage (Dimension, Km) X14
Water Pipelines passing from

lakes, rivers and ponds
Making construction impossible and interfering with our environment (Dimension, Number) X15

So
ci

o-
ec

on
om

ic Crossing water pipelines in

densely populated areas

To construct a water supply network, it is more appropriate to bypass crowded areas, ensuring greater

efficiency and a reliable water supply to a great number of people (Dimension, Number)
X16

Crossing water pipelines within

industrial areas and towns re-

liant on water

Main Industries such as power generation, chemical manufacturing, steel and metal manufacturing and

electronics manufacturing etc (Dimension, Number)
X17

Payback period Years required to recover the original cash investment (Dimension, Year) X18
Crossing water pipelines within

farms and gardens
Pipelines construction has detrimental effects on agriculture (Dimension, Km) X19

Line class description in select-

ing route

Areas with third- and fourth-class rankings are excessively crowded and hazardous (Dimension, Num-

ber)
X20

3. Case Study 282

This study was aimed at determining the best route of water pipelines from six new 283

lines to transmit water between two provinces in an area. During the previous routing 284

projects, civil engineers gathered a dataset consisting of a matrix that represents information 285

from 71 existing water pipelines. This information was associated with the 20 features 286

suitable for sustainable development goals. Moreover, a Fuzzy linguistic decision matrix 287

was made based on this dataset. In this matrix, five committee of experts evaluated the 288
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relationship between twenty features and each of the 71 lines using a fuzzy linguistic 289

approach (five-item Likert scale). The elements of this decision matrix illustrate decision- 290

makes ideas based on certain decision criteria. Due to space limitations in presenting the 291

complete data, this information is shown in the following abbreviated table 4 and table 5. 292

Table 4. Previous Fuzzy Decision Matrix (Committees’ Views on Previous Constructed Water
Pipelines Data) - 5 Decision-maker groups ideas for 71 routes by criteria.

Decision Makers
Groups Ideas X01 X02 X03 X04 X05 X06 ... X15 X16 X17 X18 X19 X20

DM G1-Line 01 I U U MI MI U ... VI I MI U MI I

DM G1-Line 02 I U U MI MI U ... VI U MI U MI I

... ... ... ... ... ... ... ... ... ... ... ... ... ...

DM G5-Line 69 MI U U I MI U ... MI U MI U MI MI

DM G5-Line 70 MI MI U I I MI ... MI MI MI MI MI U

DM G5-Line 71 MI MI MI I I MI ... U U MI MI MI U

355 rows*20 columns

Table 5. This is a table caption. Tables should be placed in the main text near to the first time they
are cited.

Line
01

Line
02

Line
03

Line
04

Line
05 ... Line

67
Line

68
Line

69
Line

70
line
71

X01 84.6 84.8 86.5 88.4 89.8 ... 92.5 94.2 95 96.7 97.5
X02 14 14 16 12 13 ... 9 9 8 6 5
X03 28 27 32 25 26 ... 18 18 17 13 10
X04 2 2 2 2 2 ... 2 1 1 1 0
X05 2 2 2 2 1 ... 2 2 2 3 3
X06 9 10 10 9 9 ... 7 7 8 7 6
X07 9 9 10 8 8 ... 6 6 6 4 3
X08 39 36 28 42 42 ... 59 60 55 63 68
X09 1090 1060 1262 997 1028 ... 700 668 608 410 311
X10 27 27 32 26 26 ... 18 18 18 13 11
X11 3 3 3 4 3 ... 4 4 4 4 4
X12 4 4 4 4 4 ... 3 3 3 3 2
X13 36 36 42 33 34 ... 23 22 21 15 12
X14 12 12 9 14 16 ... 18 19 20 23 25
X15 2 2 2 2 2 ... 3 3 3 3 4
X16 19 7 4 20 17 ... 36 36 12 15 16
X17 2 2 1 2 2 ... 3 3 2 2 2
X18 23.9 23.9 23.7 21.9 23.3 ... 21.3 21.6 22.6 22 21.7
X19 33 34 28 35 38 ... 43 44 45 50 52
X20 8 9 8 9 6 ... 10 11 14 16 17

20 rows* 71 columns

On the other hand, there was a complex situation in determining the optimal routes 293

among the six new transmission lines for conveying water between two new districts. The 294

experts intended to make decision about the appropriate routes to construct water pipelines. 295

Accordingly, these route lines were associated with the same 20 features exited in previous 296

dataset, categorized into three main sustainable development sections mentioned in the 297

previous. The data is shown in table 6. Consequently, an integrated deep learning model 298

was implemented to determine the best routes for construction to expedite the decision- 299

making process and avoid extensive data collection. The following steps are outlined the 300

study method which is elaborated in detail in following section: 301
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• Step 1 - Checking the interpretability of decision matrix data: Using a combination 302

of PCA and FVIKOR methods on 71 alternatives (existing water pipeline routes) to 303

assess the interpretability of the available Fuzzy Decision Matrix data. 304

• Step 2 - Developing Sparse Neural Network model : We have trained a multi-task 305

sparse neural network based on the old alternatives 20 criteria as the input variables 306

and fuzzy combination of all expert groups’ decision matrices which is a decision 307

matrix called the output decision matrix as the output variables using TensorFlow in 308

Python. 309

• Step 3 - Applying model to predict Fuzzy Decision Matrix for six new alternatives: 310

Using the trained model, we have predicted the fuzzy combined ratings for the new 311

alternatives. Then, we have stacked up the old and new alternatives data to use 312

FVIKOR once again to rank the new alternatives alongside the old ones. 313

Figure 3. steps of the method.

Table 6. Case Study new Alternatives (Water Pipeline routes)

Line 01 Line 02 Line 03 Line 04 Line 05 line 06

X01 104.5 100 90 78 115 83
X02 1 2 15 18 1 16
X03 2 4 30 36 1 33
X04 0 0 2 3 0 3
X05 3 3 2 1 2 1
X06 3 5 10 11 2 11
X07 0 1 10 12 0 11
X08 95 80 30 20 96 25
X09 12 15 1200 1450 10 1325
X10 3 5 30 35 1 33
X11 6 5 3 2 4 3
X12 1 2 4 5 0 5
X13 0.5 2 40 48 0 44
X14 30 30 10 6 40 8
X15 4 4 2 1 2 2
X16 69 20 5 2 58 4
X17 5 3 1 1 3 1
X18 18.14 20.83 24.3 25.83 21.14 23.127
X19 60 60 30 24 75 27
X20 15 19 8 5 7 7

20 rows* 6 columns

4. Results & Discussion 314

As discussed in the previous section, there is a dataset consisting of a matrix that 315

represent 71 water pipelines as alternatives with 20 features (criteria). These pipelines’ 316

features were evaluated by five groups of decision-makers, utilizing a fuzzy Likert scale 317

which resulted in a fuzzy decision matrix. To expedite the decision-making process and 318
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avoid extensive data collection approaches like using questionnaires to gather a new fuzzy 319

decision matrix for 6 new water pipeline routes, a deep learning model was developed. 320

This model was trained on the existing fuzzy decision matrix (refer to table 5) to predict the 321

fuzzy Likert scale associated with each six new alternatives (routes). To do so, an initial 322

stage is required to ascertain whether the present fuzzy decision matrix has the necessary 323

information for predicting the combined ratings nor not. To check the interpretability of 324

the data, PCA is employed alongside VIKOR scores for 71 existing routes. This allows us 325

to determine whether it is actually possible to define a statistical classifier function in a 326

reduced-dimensional space. 327

Using fuzzy VIKOR for available decision matrix of 71 existing routes, we can rank 328

these alternatives as follows chart. Due to limitation space, the first top 25 alternatives are 329

shown in figure 4. 330

Figure 4. Fuzzy VIKOR scores for the top 29 constructed water pipelines.

All these 71 alternatives were classified by PCA method, while their ranking was 331

determined through VIKOR. The results of these two methods are combined as follows: 332

Figure 5. Combining PCA and FVIKOR .
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In the figure 5, there are regions with alternatives uniformly received higher VIKOR 333

scores, while other areas show alternatives with consistently lower scores. This implies that 334

the data’s internal variability is valuable for detecting alternatives with higher score, in 335

other words, the laying information within the data is enough to build a classifier function. 336

Therefore, fitting a model on the former alternatives can be reasonable. 337

4.1. Sparse Deep Learning ANN (Model Training) 338

As previously mentioned, a fuzzy decision matrix was available from previous water 339

pipeline projects gathered by experts. As the idea behind each element of the decision matrix 340

in each group of experts could be affected by different factors, it appears the function that 341

can predict the elements of a new decision matrix could be quite complex. Also, we need a 342

model to predict the elements of the decision matrix simultaneously for each alternative 343

(or we would like the model to be a multi-task model) to save time and not train the same 344

model multiple times with different elements of the decision matrix as the output variable. 345

As a result, a multi-task deep learning model was developed to be trained on this dataset. 346

This model led to prediction elements of the output decision matrix (fuzzy numbers) for six 347

new alternatives (routes); these predicted elements show a combination of decision-makers 348

ideas based on certain decision criteria (twenty features). Accordingly, neural network 349

models can offer such a prediction using a complex function. In theory, a single hidden 350

layer with a large number of units has the ability to estimate most functions. However, the 351

process of learning for finding a solution becomes very smooth when we utilize several 352

moderately-sized ones instead (James et al. [45]). Thus, we pick a deep neural network 353

model with 2 hidden layers. To ensure the model achieves adequate accuracy in capturing 354

the complexities among decision matrix elements during training, it is imperative to select 355

an approach capable of addressing this challenge without yielding overfitted predictions. 356

It was also discussed that some of the criteria (twenty features) could be interdependent 357

and using all of them in our model can be noise accumulating and inconsistent. To ensure 358

our model selects only the contributing features or criteria, the predictive model has to 359

be l1 -penalized. This kind of penalization leads to objective dimension reduction using 360

sparsification of the models’ parameters which is helpful for addressing the issue with 361

stacked-up noise. The model architecture can be seen the Figure 6. 362

Figure 6. Model architecture of a multi-task deep neural network with 2 hidden layers.

After utilizing the multi-task penalized sparse deep neural network to predict the 363

elements of the new fuzzy decision matrix for the six new alternatives, the Fuzzy VIKOR 364

methodology was utilized to reassess and rank both the new and existing alternatives. This 365
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evaluation was conducted with the goal of determining the relative placement of these six 366

new alternatives (routes) within the ranking scores among all 77 available water pipeline 367

alternatives. Accordingly, if the rankings of the new alternatives were to place within the 368

top 25, these options might be considered appropriate for implementing water transmission 369

between the two areas. The first 25 alternatives are displayed in the figure 7. 370

Figure 7. FVIKOR scores for the all the alternatives (77 routes). According to these new rankings,
the 4th route of new water pipeline has received the highest score. Also, the 6th and the 3rd of new
routes for proposed water pipelines have received a considerable score..

Clearly, among the six new alternatives considered for water transmission between 371

two areas, routes of water pipelines 04, 06, and 03 are the appropriate choices for the 372

study’s goals since they were ranked among within the top 25 new routes based on the 373

new FVIKOR scores. 374

Following the predictions from the DNN model, the Fuzzy VIKOR method was 375

utilized to re-evaluate and rank all 77 pipeline alternatives. The table 7 represents the new 376

rankings of all 77 water pipeline routes: 377

Table 7. New FVIKOR Scores for all 77 Water Pipeline Routes

Alternative S-Value R-Value VIKOR Score Ranking

Water Pipeline New 04 0.0003 0.0004 0.0004 1

Water Pipeline 29 0.0003 0.0004 0.0004 2
Water Pipeline 27 0.0003 0.0004 0.0004 3

... ... ... ... ...
Water Pipeline 14 0.0003 0.0004 0.0004 6
Water Pipeline 41 0.0003 0.0004 0.0004 7

Water Pipeline New 06 0.0003 0.0004 0.0003 8

Water Pipeline 64 0.0003 0.0004 0.0003 9
Water Pipeline 60 0.0003 0.0004 0.0003 10

... ... ... ... ...
Water Pipeline 40 0.0003 0.0003 0.0003 14
Water Pipeline 02 0.0002 0.0003 0.0003 15

Water Pipeline New 03 0.0002 0.0003 0.0003 16

Water Pipeline 63 0.0002 0.0003 0.0003 17
... ... ... ... ...
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5. Conclusion 378

This study focused on the crucial task of optimizing water pipeline route selection 379

through an integrated approach involving a Sparse Deep Neural Network (DNN) and 380

the Fuzzy VIKOR method. Water scarcity and the limited availability of consumable 381

water emphasize the importance of efficient water transmission projects. Traditional 382

manual methods of pipeline routing, though effective, suffer from time constraints and 383

limited data processing capabilities. To address these challenges, the study proposed 384

an integrated approach leveraged by deep learning methodology in combination with 385

a Fuzzy multi-criterion decision-making method (FVIKOR) for determining the optimal 386

water pipeline route. Furthermore, the existence of interdependency among criteria is 387

a concern in Multiple Criteria Decision Making (MCDM) methods, as it can introduce 388

unnecessary inconsistency into the decision-making process. This issue becomes more 389

pronounced in situations with numerous criteria, leading to noise resulting from redundant 390

factors. A Penalized Neural Network provides a solution by selecting the most significant 391

features through dimension reduction. In this regard, an integrated Deep Learning model 392

with Fuzzy VIKOR was used to encounter this problem. A case study was presented to 393

explain the proposed approach. The case study involved six new routes for transmitting 394

water between two provinces. A comprehensive fuzzy decision matrix consisted of 71 395

existing water pipelines routes, evaluated against 20 sustainable development features, 396

formed the foundation of this study. A multi-task deep learning model was developed 397

to expedite the decision-making process for six new routes to see which ones are suitable 398

for transmitting water between two areas. This model, comprising two hidden layers, 399

was capable of predicting fuzzy decision matrix elements for the new alternatives. The 400

model’s complexity was addressed by l1-penalization, which allowed for feature selection 401

and noise reduction. Among the six new routes, options 04, 06, and 03 were deemed 402

the most suitable choices for implementation, as they secured rankings within the top 25 403

alternatives. This integrated approach showcases the potential of modern technologies like 404

Deep Neural Networks and multi-criteria decision-making methods like Fuzzy VIKOR in 405

making decision challenges. This study contributes to an efficient and sustainable approach 406

to transmitting water through a combination of a data-driven prediction model with a multi- 407

criteria decision-making method which ultimately benefits the environment and society. 408

However, it is advisable for future research to utilize resampling methods in combination 409

with the fitting model to enhance the accuracy of the model since the limitation of data 410

availability for these kinds of studies has negative effects on model precision. Moreover, in 411

future studies, additional geographical factors such as soil composition, faults, and natural 412

features could be incorporated into the assessment of water pipeline projects, enhancing 413

the comprehensiveness of the evaluation. 414
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